郑大考研网育博书店

标题: 【王景涛】郑州大学化工与能源学院研究生导师介绍 [打印本页]

作者: 信息发布    时间: 2017-3-15 18:43
标题: 【王景涛】郑州大学化工与能源学院研究生导师介绍

  王景涛 男 出生年月 1984年11月

  学历/学位 博士 学科专业 化学工艺

  毕业院校天津大学

  职称/职务 教授/化学工程与工艺系主任

  导师类别 博士生导师、硕士生导师

  所属一级学科化学工程与技术

  学科方向 膜与膜过程、新能源技术

  科研团队先进分离技术及相关材料

  社会兼职 JACS, Journal Materials Chemistry A, Journal of power sources, Journal of Membrane Science和ACS Applied Materials & Interfaces等12个期刊审稿人

  电话或手机 0371-63887135个人网页/微薄

  电子信箱 jingtaowang@zzu.edu.cn QQ号码

  通讯地址 郑州市科学大道100号 邮编 450001

  招生一级学科化学工程与技术

  招生二级学科/专业注册(主招)专业 化学工艺

  兼招专业:化学工程应用化学

  对考生要求

  学风端正、踏实肯干、诚实守信、胆大心细;具有较强的创新意识、较高的数学与英语水平;有出国读博或博士后意向者。

  1. 学习经历

  2003.09-2007.06天津大学 本科分子科学与工程专业(其中2003.09-2005.06 在南开大学化学学院学习)

  2007.09-2009.01天津大学 硕士化学工艺专业

  2009.03-2012.01天津大学 博士化学工艺专业

  2. 工作经历

  2012-2014 郑州大学化工与能源学院讲师(教学秘书)

  2015-2016 郑州大学化工与能源学院副教授(系主任)

  2016-至今 郑州大学化工与能源学院教授(校直聘,系主任)

  开设课程:

  1. 本科生专业基础课程:“化工原理(大三)”

  2. 本科生专业课程:“新型分离技术(大四)”

  3. 本科生专业实践课程:“认识实习(大三)”

  4. 本科生专业实践课程:“课程设计(大四)”

  研究领域或方向

  研究领域:“膜分离技术及其相关应用”,侧重于氢燃料电池、超级电容器、有机溶剂纳滤关键膜材料的研制及相关基础理论研究。

  基于能源和环境问题,以膜材料设计与调控为中心,以物质传递/传导为切入点,聚焦现代化工新工艺开发与过程强化。在能源方面,开发高性能传导膜与电极材料并研究其构效关系,提高氢燃料电池及超级电容器效率和寿命,促进绿色、高效新能源技术发展;在环境方面,基于制备方法及材料创新开发高性能有机剂纳滤膜,并系统研究其有机溶剂处理回用性能。

  代表性科研项目(主持)

  [1] 国家自然科学基金 面上项目:“多级孔结构纤维复合膜微结构调控与质子传递过程强化”,2016.01-2019.12。

  [2] 国家自然科学基金 青年基金:“无水质子传递通道的仿生构建与离子液体质子传递机理研究”,2013.01-2015.12。

  [3] 中国博士后科学基金 批特别资助:“纤维复合膜质子传导特性及其强化机制研究”,2014.07-2016.06。

  [4] 中国博士后科学基金 面上项目:“基于酸碱对构建质子传递通道及其微环境优化”,2012.07-2014.06。

  [5] 河南省教育厅:“高传导质子交换膜的制备及其燃料电池性能研究”,2015.01-2016.12。

  [6] 河南省人力资源和社会保障厅:“新型质子交换膜开发及氢燃料电池性能研究”,2012.07-2015.12。

  [7] 郑州大学:“杂化法制备高传导质子交换膜及传递通道构建”,2012.03-2017.02。

  代表性科技奖励

  [1] 郑州大学“三育人”先进个人。

  [2] 郑州大学优秀班主任。

  [3] 指导研究生获研究生国家奖学金(6人)、国家级大学生创新性实验计划项目(4项)、郑州大学校级百优研究生(8人)。

  主要成果、获奖情况、荣誉称号

  主要代表性论文(第一作者和通讯作者)

  2016年:

  [36] Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane. ACS Applied Materials & Interfaces, 2016, 8, 20352-20363. (1区, IF=7.145)

  [35] Constructing ionic liquid-filled proton transfer channels within nanocomposite membrane by using functionalized graphene oxide. ACS Applied Materials & Interfaces, 2016, 8, 588-599. (1区, IF=7.145)

  [34] Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515, 175-188. (1区, IF=5.557)

  [33] Constructing dual-interfacial proton-conducting pathways in nanofibrous composite membrane for efficient proton transfer. Journal of Membrane Science, 2016, 505, 108-118. (1区, IF=5.557)

  [32] Embedding sulfonated lithium ion-sieves into polyelectrolyte membrane to construct efficient proton conduction pathways. Journal of Membrane Science, 2016, 501, 109-122. (1区, IF=5.557)

  [31] Tuning the performance of anion exchange membranes by embedding multifunctional nanotubes into a polymer matrix. Journal of Membrane Science, 2016, 498, 242-253. (1区, IF=5.557)

  [30] Polymer-inorganic hybrid proton conductive membranes: effect of the interfacial transfer pathways. Electrochimica Acta, 2016, 212, 426-439. (1区, IF=4.803)

  [29] Tuning the microstructure and permeation property of thin film nanocomposite membrane by functionalized inorganic nanospheres for solvent resistant nanofiltration. Separation and Purification Technology, 2016, 165, 60–70. (2区, IF=3.299)

  [28] Composite anion exchange membrane from quaternized polymer spheres with tunable and enhanced hydroxide conduction property. Industrial & Engineering Chemistry Research, 2016, 55, 9064–9076. (2区, IF=2.567)

  2015年:

  [27] Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix. Journal of Materials Chemistry A, 2015, 3, 21832–21841. (1区, IF=8.262)

  [26] Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide. Journal of Power Sources, 2015, 286, 445–457. (1区, IF=6.333)

  [25] Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity. Journal of Power Sources, 2015, 279, 667–677. (1区, IF=6.333)

  [24] Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells. Journal of Membrane Science, 2015, 495, 48–60. (1区, IF=5.557)

  [23] Enhanced proton conductivities of nanofibrous composite membranes enabled by acid-base pairs under hydrated and anhydrous conditions. Journal of Membrane Science, 2015, 482, 1–12. (1区, IF=5.557)

  [22] Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways. Journal of Membrane Science, 2015, 476, 136–147. (1区, IF=5.557)

  [21] Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles. Electrochimica Acta, 2015, 152, 443–455. (1区, IF=4.803)

  [20] Tunable solvent permeation properties of thin film nanocomposite membrane by constructing dual-pathways using cyclodextrins for organic solvent nanofiltration. ACS Sustainable Chemistry & Engineering, 2015, 3, 1925–1933. (2区, IF=5.267)

  [19] Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability. Chemical Engineering Science, 2015, 138, 227–238. (2区, IF=2.750)

  [18] Tuning the performance of composite membranes by optimizing PDMS content and cross-linking time for solvent resistant nanofiltration. Industrial & Engineering Chemistry Research, 2015, 54, 6175–6186. (2区, IF=2.567)

  [17] Nanohybrid membranes with hydroxide ion transport highways constructed from imidazolium-functionalized graphene oxide. RSC Advances, 2015, 5, 88736–88747. (3区, IF=3.289)

  2014年:

  [16] Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. Journal of Materials Chemistry A, 2014, 2, 9548–9558. (1区, IF=8.262)

  [15] Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions. Journal of Power Sources, 2014, 269, 898–911. (1区, IF=6.333)

  [14] Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration. Journal of Membrane Science, 2014, 470, 70–79. (1区,IF=5.557)

  [13] Enhanced proton conduction of chitosan membrane enabled by halloysite nanotubes bearing sulfonate polyelectrolyte brushes. Journal of Membrane Science, 2014, 454, 220–232. (1区, IF=5.557)

  [12] Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes. International Journal of Hydrogen Energy, 2014, 39, 974 –986. (2区, IF=3.205)

  [11] Cross-linked polyacrylonitrile/polyethyleneimine–polydimethylsiloxane composite membrane for solvent resistant nanofiltration. Chemical Engineering Science, 2014, 106, 157–166. (2区, IF=2.750)

  2013年:

  [10] Independent control of water retention and acid–base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity. Journal of Materials Chemistry A, 2013, 1, 2267–2277. (1区, IF=8.262)

  [9] Enhanced proton conductivity of sulfonated poly(ether ether ketone) membrane embedded by dopamine modified nanotubes for proton exchange membrane fuel cell. Fuel cells, 2013, 13, 1155–1165. (3区, IF=2.080)

  2012年:

  [8] Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes. Advanced Functional Materials, 2012, 22, 4539–4546. (1区, IF=11.382)

  2011年:

  [7] Enhanced water retention by using polymeric microcapsules to confer high proton conductivity on membranes at low humidity. Advanced Functional Materials, 2011, 21, 971–978. (1区, IF=11.382)

  2010年:

  [6] Fabrication and performances of solid superacid embedded chitosan hybrid membranes for direct methanol fuel cell. Journal of Power Sources, 2010, 195, 2526–2533. (1区, IF=6.333)

  [5] Simultaneously enhanced methanol barrier and proton conductive properties of phosphorylated titanate nanotubes embedded nanocomposite membranes. Journal of Power Sources, 2010, 195, 1015–1023. (1区, IF=6.333)

  [4] Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres. Journal of Membrane Science, 2010, 364, 253–262. (1区, IF=5.557)

  2009年:

  [3] A facile surface modification of Nafion membrane by the formation of self-polymerized dopamine nano-layer to enhance the methanol barrier property. Journal of Power Sources, 2009, 192, 336–343. (1区, IF=6.333)

  [2] Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix. Journal of Power Sources, 2009, 188, 64–74. (1区, IF=6.333)

  2008年:

  [1] Effect of zeolites on chitosan/zeolite hybrid membranes for direct methanol fuel cell. Journal of Power Sources, 2008, 178, 9–19. (1区, IF=6.333)




欢迎光临 郑大考研网育博书店 (http://zzuedu.com/) Powered by Discuz! X2.5