郑大考研网育博书店

标题: 郑州大学数学系研究生导师——杨志坚教授 [打印本页]

作者: 郑大考研网1    时间: 2010-11-30 10:38
标题: 郑州大学数学系研究生导师——杨志坚教授
姓名: 杨志坚
E-mail: yzjzzvt@zzu.edu.cn yzjzzut@tom.com
研究方向: 非线性发展方程、无穷维动力系统
个人简介1975.9—1978.7河南师范大学数学系学习, 1978.7本科毕业。
1997.9—2000.7郑州大学数学系博士研究生, 2000.7毕业, 获理学博士学位。
2004.9—2005.7 大连外国语学院教育部出国留学人员培训部学习日语。
2005.10—2006.10 日本九州大学数理学研究院访问教授 , 2006.9获九州大学数理学博士学位。
2000.9—至今 郑州大学数学系教授, 河南省跨世纪学术、技术带头人培养对象, 河南省数学会常务理事。现任美国 《Mathematical Reviews》评论员, 美国 《International Journal of Applied Mathematical Analysis and Applications》编委,《Journal of Partial Differential Equations》编委。获奖情况
1. 《流体力学与粘弹性力学中的非线性模型方程》 获得2000年河南省科技进步二等奖。
2. 《非线性高阶发展方程--物理与力学中的若干模型方程》 获得1997年化学工业部科技进步三等奖。
3. 《Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term》2004年获河南省教育厅优秀科技论文一等奖。
4. 《Blowup of solutions for the “bad” Boussinesq-type equation》2004年获河南省教育厅优秀科技论文一等奖。
主要论文
2010
1.       杨志坚, Global Attractors and Their Hausdorff Dimensions for A Class of Kirchhoff Models, J. Mathematical Physics, 51, 1 2010,doi:10.1063/1.3303633
2009
2.       杨志坚, 靳宝霞, Global attractor for a class of Kirchhoff models, J. Mathematical Physics, 2009, 50 (3) 032701-1-29.
3.       杨志坚, Global attractor for a nonlinear wave equation arising in elastic waveguide model,  Nonlinear Analysis 70 (2009) 2132–2142.
4.       杨志坚, Longtime behavior for a nonlinear wave equation arising in elasto-plastic flow,  Mathematical Methods in the Applied Sciences, 32: 1082-1104(2009)
5.       宋长明, 杨志坚, Global solution to the Cauchy problem of the nonlinear double dispersive wave equation with strong damping, Dynamics of PDE, 6: 4, 367-383, 2009
6.       宋长明, 杨志坚,  Existence and nonexistence of global solutions to the Cauchy problem for a nonlinear beam equation, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.1175 (2009).
2008
7.       杨志坚,郭柏灵, Cauchy problem for the multi-dimensional Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2008, 340: 64-80.
2007
8.       杨志坚, Longtime behavior of the Kirchhoff type equation with strong damping on ,   J. Differential Equations, 2007, 242: 269-286.
9.       M. Nakao, 杨志坚, Global attractors for some quasi-linear wave equations with a strong dissipation, Advan. Math. Sci. Appl. 2007, 17: 87-106.
2006
10.   杨志坚, Cauchy problem for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2006, 320: 859-881.
11.   杨志坚, Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow, Journal of Mathematical Analysis and Applications, 2006, 313: 197-217.
2005
12.   杨志坚,  Viscous solutions on some nonlinear wave equations, Nonlinear Analysis 2005, 63: e2607-e2619.
2004
13.   杨志坚,  Cauchy problem for quasi-linear wave equations with nonlinear damping and source terms, Journal of Mathematical Analysis and Applications, 2004, 300: 218-243.
2003
14.   杨志坚, Global existence, asymptotic behavior and blowup of solutions for a class of nonlinear wave equation with dissipative term, J.Differential Equations, 2003, 187: 520-540.
15.   杨志坚, 王霞,  Blowup of solutions for improved Boussinesq type equation, Journal of Mathematical Analysis and Applications, 2003, 278: 335-353.
16.   杨志坚, 王霞, Blowup of solutions for the “bad” Boussinesq-type equation, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 282-298.
17.   杨志坚,  陈国旺, Global existence of solutions for quasi-linear wave equations with viscous damping, Journal of Mathematical Analysis and Applications, 2003, 285: 2, 606-620.
18.   杨志坚,  Initial boundary value problem for a class of nonlinear strongly damped wave equation, Mathematical Methods in the Applied Sciences, 2003, 26 (12): 1047-1066.
2002
19.   杨志坚,  On local existence of solutions of the initial boundary value problem of the “bad” Boussinesq type equation,Nonlinear Anal. 2002, 51(7): 1251-1263.
20.   杨志坚,  Existence and asymptotic behavior of solutions for a class of quasi-linear evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences,2002, 25: 795-814.
21.   杨志坚,  Blowup of solutions for a class of evolution equations with nonlinear damping and source terms, Mathematical Methods in the Applied Sciences, 2002, 25: 825-833.
2000
22.   陈国旺, 杨志坚, Existence and non-existence of global solutions for a class of non-linear wave equations, Mathematical Methods in the Applied Sciences, 2000, 23: 615-631.
23.   杨志坚,  Existence and nonexistence of global solutions to a generalized modification of the improved Boussinesq equation, Mathematical Methods in the Applied Sciences, 1998, 21: 1467-1477.
24.   杨志坚, 宋长明,  Blowup of solutions for a class of quasi-linear evolution equations, Nonlinear Analysis, 1997, 28: 2017-2032.
25. 陈国旺, 邢家省, 杨志坚, Cauchy problem for generalized IMBq equation with several variables, Nonlinear Analysis, 1996, 26: 1255-1270.
科研项目1. 国家自然科学基金资助项目《非线性高阶发展方程的理论及其应用》2010.1—2012.12.
2. 河南省基础与前沿技术研究计划项目:《非线性高阶发展方程的长时间行为研究》2009.1—2011.12.
3. 国家留学基金委员会“中国政府派遣研究员项目”《非线性高阶发展方程的渐近行为》2005.10--2006.10。




欢迎光临 郑大考研网育博书店 (http://zzuedu.com/) Powered by Discuz! X2.5